The Most Common Wi-Fi Standards and Types, Explained


Wi-Fi is a catch-all term. In a sense, it is very precise. It explains a specific method you can use to connect to the internet.

There are many different types of Wi-Fi standards. Your router, laptop, tablet, smartphone, and smart home devices use different wireless standards to connect to the internet. Wireless standards change every few years, too. Updates bring faster internet, better connections, more simultaneous connections, and so on.

The issue is that, for most people, the sheer litany of wireless standards and specifications is confusing. Here’s the full rundown of Wi-Fi standards.

Wi-Fi Standards Explained

Wireless standards are a set of services and protocols that dictate how your Wi-Fi network (and other data transmission networks) acts.

The most common wireless standards you will encounter are the IEEE 802.11 Wireless LAN (WLAN) & Mesh. The IEEE updates the 802.11 Wi-Fi standard every few years. At the time of writing, the most commonly used Wi-Fi standard is 802.11ac, while the next generation Wi-Fi standard, 802.11ax (also known as Wi-Fi 6 and Wi-Fi6E—but more on this in a moment!), is rolling out, albeit slower than most experts thought.

Now, the generation after 802.11ax is on the horizon, with IEEE 802.11be mooted for launch around 2024/2025 (using the name Wi-Fi 7).

A Brief History of Wireless Standards

Not all old Wi-Fi standards are obsolete. At least, not yet. Here is a brief history of Wi-Fi standards and whether the standard is still active.

  • IEEE 802.11: The original! This now-defunct standard was created in 1997 and supported a blazing fast maximum connection speed of 54 megabits per second (Mbps). Devices using this haven’t been made for over a decade and won’t work with today’s equipment.
  • IEEE 802.11a: Created in 1999, this version of Wi-Fi works on the 5GHz band. This was done with the hope of encountering less interference since many devices (like most wireless phones) also use the 2.4GHz band. 802.11a is fairly quick, too, with maximum data rates topping out at 54Mbps. However, the 5GHz frequency has more difficulty with objects in the signal’s path, so the range is often poor.
  • IEEE 802.11b: Also created in 1999, this standard uses the more typical 2.4GHz band and can achieve a maximum speed of 11Mbps. 802.11b was the standard that kick-started Wi-Fi’s popularity.
  • IEEE 802.11g: Designed in 2003, the 802.11g standard upped the maximum data rate to 54Mbps while retaining use of the reliable 2.4GHz band. This resulted in the widespread adoption of the standard.
  • IEEE 802.11n: Introduced in 2009, this version had slow initial adoption. 802.11n operates on both 2.4GHz and 5GHz, as well as supporting multi-channel usage. Each channel offers a maximum data rate of 150Mbps, which means the standard’s maximum data rate is 600Mbps.
  • IEEE 802.11ac: The ac standard is what you will find most wireless devices using at the time of writing. Initially released in 2014, ac drastically increases the data throughput for Wi-Fi devices up to a maximum of 1,300 megabits per second. Furthermore, ac adds MU-MIMO support, additional Wi-Fi broadcast channels for the 5GHz band, and support for more antennas on a single router.
  • IEEE 802.11ax: Next up for your router and your wireless devices is the ax standard. As 802.11ax completes its rollout, you will have access to theoretical network throughput of 10Gbps—around a 30-40 percent improvement over the ac standard. Furthermore, wireless ax will increase network capacity by adding broadcast subchannels, upgrading MU-MIMO, and allowing more simultaneous data streams.
  • IEEE 802.11be: Although the specifications for 802.11be are yet to be finalized, its highly likely that this will become the successor to 802.11ax. As per the IEEE Xplore paper, 802.11be will deliver “doubled bandwidth and the increased number of spatial streams, which together provide data rates as high as 40 Gbps.”

Can All Wi-Fi Standards Communicate?

Two devices using the same Wi-Fi standard can communicate without restriction. Issues arise, however, when you try to connect two devices that use different, potentially incompatible wireless standards.

  • In recent times, your router and devices using 802.11ac can communicate happily.
  • Devices that use 802.11b, g, and n can all communicate with an ac router.
  • 11b cannot communicate with a, and vice versa.
  • 11g cannot communicate with b, and vice versa.

The original 1997 standard (now known as 802.11 legacy) is now obsolete, while the a and b standards are nearing the end of their lifespan.

Legacy Wi-Fi Standards Firmware Issues

If you buy a new device, you make your purchase knowing that when you get it home, it will connect to your router. If you have an old router, using an old Wi-Fi standard, that isn’t the case.

It is the same if you have a legacy device.

For instance, if you bring home a shiny new 802.11ac router to beam Wi-Fi to all of the dark recesses, it doesn’t mean your old device can suddenly use the ac standard. You will receive some of the router’s benefits, such as the range increase, but your connection is only as fast as the device’s Wi-Fi standard.

If your device uses 802.11n, it will only connect and transmit using the n standard.

What Is Wi-Fi 6?

Wi-Fi 6 is the Wi-Fi Alliance’s wireless standard naming system. The Wi-Fi Alliance argues that the 802.11 terminology is confusing for consumers. They are right; updating one or two letters doesn’t give users much information to work with.

The Wi-Fi Alliance naming system runs concurrently with the IEEE 802.11 convention. Here’s how the naming standards correlate:

  • Wi-Fi 6E: 11ax (2021)
  • Wi-Fi 6: 11ax (2019)
  • Wi-Fi 5: 11ac (2014)
  • Wi-Fi 4: 11n (2009)
  • Wi-Fi 3: 11g (2003)
  • Wi-Fi 2: 11a (1999)
  • Wi-Fi 1: 11b (1999)
  • Legacy: 11 (1997)

What Is Wi-Fi 6E?

Wi-Fi 6 became a widespread Wi-Fi standard throughout 2020. But by the end of 2020, another “new” standard was beginning to pick up the pace.

Wi-Fi 6E is an extension of Wi-Fi 6. The update allows your Wi-Fi connection to broadcast over a new 6GHz band.

Previously, all Wi-Fi connections were restricted to two bands, 2.4GHz and 5GHz. Those two frequency bands are busy, with each band broken down into smaller channels. For instance, if you live in an apartment building, you may have many Wi-Fi routers attempting to broadcast on the same frequency, using the same channel.

This doesn’t mean your data is going to end up on your neighbor’s computer. That’s not how the modern packet-switching internet works. But it can cause Wi-Fi performance issues, especially in congested areas.

Wi-Fi 6E creates 14 new 80MHz channels and seven 160Mhz channels, drastically increasing available network capacity for users. Those users in dense, congested areas will have substantially more bandwidth available for use, reducing Wi-Fi interference. In short, Wi-Fi 6E effectively quadruples the amount of space available to your Wi-Fi connection.

So, when can you get your hands on a new Wi-Fi 6E router? The first few Wi-Fi 6E-equipped routers will begin appearing throughout 2021, with Netgear one of the first manufacturers to bring one to market.

Now Secure Your Wi-Fi Router While You Can

Upgrading your devices to the latest Wi-Fi standard has heaps of benefits, not least the speed increase. Upgrading your router is that little bit easier now you can differentiate between the various Wi-Fi standards.

Source link

Share it with your friends

Crowded Hell

Crowded Hell

Leave a Reply

Your email address will not be published.